Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
نویسندگان
چکیده
An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a “smooth+singular” decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain precise error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.
منابع مشابه
A finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملاستفاده از دستگاه مختصات متعامد محلی در مدل کردن ترک دو بعدی به روش المان محدود توسعه یافته
The extended finite element method (X-FEM) is a numerical method for modeling discontinuties, such as cracks, within the standard finite element framework. In X-FEM, special functions are added to the finite element approximation. For crack modeling in linear elasticity, appropriate functions are used for modeling discontinuties along the crack length and simulating the singularity in the crack...
متن کاملAdaptive Finite Element Methods for Parameter Estimation Problems in Linear Elasticity
In this paper, the Lamé coefficients in the linear elasticity problem are estimated by using the measurements of displacement. Some a posteriori error estimators for the approximation error of the parameters are derived, and then adaptive finite element schemes are developed for the discretization of the parameter estimation problem, based on the error estimators. The GaussNewton method is empl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1203.1278 شماره
صفحات -
تاریخ انتشار 2012